Depletion of a polo-like kinase in Candida albicans activates cyclase-dependent hyphal-like growth.

نویسندگان

  • Catherine Bachewich
  • David Y Thomas
  • Malcolm Whiteway
چکیده

Morphogenesis in the fungal pathogen Candida albicans is an important virulence-determining factor, as a dimorphic switch between yeast and hyphal growth forms can increase pathogenesis. We identified CaCDC5, a cell cycle regulatory polo-like kinase (PLK) in C. albicans and demonstrate that shutting off its expression induced cell cycle defects and dramatic changes in morphology. Cells lacking CaCdc5p were blocked early in nuclear division with very short spindles and unseparated chromatin. GFP-tagged CaCdc5p localized to unseparated spindle pole bodies, the spindle, and chromatin, consistent with a role in spindle elongation at an earlier point in the cell cycle than that described for the homologue Cdc5p in yeast. Strikingly, the cell cycle defects were accompanied by the formation of hyphal-like filaments under yeast growth conditions. Filament growth was determinate, as the filaments started to die after 24 h. The filaments resembled serum-induced hyphae with respect to morphology, organization of cytoplasmic microtubules, localization of nuclei, and expression of hyphal-specific components. Filament formation required CaCDC35, but not EFG1 or CPH1. Similar defects in spindle elongation and a corresponding induction of filaments occurred when yeast cells were exposed to hydroxyurea. Because CaCdc5p does not appear to act as a direct repressor of hyphal growth, the data suggest that a target of CaCdc5p function is associated with hyphal-like development. Thus, an internal, cell cycle-related cue can activate hyphal regulatory networks in Candida.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hbr1 Activates and Represses Hyphal Growth in Candida albicans and Regulates Fungal Morphogenesis under Embedded Conditions

Transitions between yeast and hyphae are essential for Candida albicans pathogenesis. The genetic programs that regulate its hyphal development can be distinguished by embedded versus aerobic surface agar invasion. Hbr1, a regulator of white-opaque switching, is also a positive and negative regulator of hyphal invasion. During embedded growth at 24°C, an HBR1/hbr1 strain formed constitutively f...

متن کامل

Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans.

Candida albicans is an important opportunistic human fungal pathogen that can cause both mucosal and systemic infections in immunocompromised patients. Critical for the virulence of C. albicans is its ability to undergo a morphological transition from yeast to hyphal growth mode. Proper induction of filamentation is dependent on the ubiquitination pathway, which targets proteins for proteasome-...

متن کامل

Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans.

The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. We have cloned the CaCDC35 gene encoding C. albicans adenylyl cyclase by functional complementation of the conditional growth defect of Saccharomyces cerevisiae cell...

متن کامل

CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans

Nuclear Dbf2-related (NDR) protein kinases are essential components of regulatory pathways involved in cell morphogenesis, cell cycle control, and viability in eukaryotic cells. For their activity and function, these kinases require interaction with Mob proteins. However, little is known about how the Mob proteins are regulated. In Candida albicans, the cyclin-dependent kinase (CDK) Cdc28 and t...

متن کامل

Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth.

Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2003